


1) Model extraction: competition company tries to steal model’s weight from 
predictions, and propose another application running on the stolen model for 
1.99 CHF on the market. 

2) Attack on the patient dataset: try to infer information about 
a) the dataset and its distribution (property)
b) patients in the training set: who is in the dataset (membership)
c) for a given patient, whether a sensitive field like 

“had_respiratory_disease” is true, given the other info (attribute). 
Other attacks are of course possible (unethical use of the application’s prediction, 
poisoning) but do not fall under the privacy notion.



1) By default, the confidence is expected to be lower. However, the right answer 
is: it depends! Indeed if the model learned on patients that are similar to you 
(i.e. you have “neighbors” in the training set) and the model is a good model 
that is able to generalize, you might get a prediction with high confidence. 

2) Many queries (random or carefully chosen).
3) Confidence is part into 2. Following the intuition of 1), the confidence is 

expected to be lower for unseen users. So, low confidence seems to 
indicates that query likely not in the training set, and high confidence indicates 
that model have seen that patient during training. This is a total assumption, 
that might not be true, but assumed to be in this toy application. 

4) Define a threshold of in / out, here at the middle, query on the target z. If the 
confidence of the prediction on z is lower than threshold, say not in training 
set, if higher, say in the training set.



1) Yes, because a (not stupid) model learns many things from one point. Hence, 
the presence of each point in the training data will influence the prediction and 
confidence of the application on many point. Whereas the change in behavior 
with/without z might be the most noticeable on the output of the query on z 
itself, it is possible to infer membership of z through other points (easy 
example, noisy version of z). So yes, you can still do a membership attack on 
z without querying on z.

2) The middle of the graph threshold is not going to work as you will always say 
“in”. You need a special threshold for the cryptographers if you want your 
attack to work. More generally, your attack can gain in accuracy by having 
per-population thresholds.

3) Yep. The model can fail to generalize on some populations (for example 
underrepresented populations) and have a bigger confidence gap, which 
make the attack more accurate.



1) Enforce generalization, for example through DP. You can also think or 
removing the patients/populations you cannot protect from. According to the 
minimum disclosure principle, confidence can be removed and prediction 
given as it with a disclaimer notice. Queries can be limited.

2) The distribution on train data and test data becomes similar. Often, removing 
overfitting can lead in the accuracy on training instances to go down. Based 
on our assumption that the two spikes are respectively non-members of 
training data and members, one possibility is that the right spike shifts to the 
left, and the two spikes collude, but it is not true in general.

3) Protection against attribute inference attacks is implied by DP. Property 
inference attacks are not protected from.


